Nilai \( \displaystyle \lim_{x \to 3} \ \frac{x^2-9}{2x^2-7x+3} = \cdots \)
- 1/2
- 5/6
- 6/7
- 7/6
- 6/5
(UNBK SMA IPS 2019)
Pembahasan:
\begin{aligned} \lim_{x \to 3} \ \frac{x^2-9}{2x^2-7x+3} &= \lim_{x \to 3} \ \frac{(x+3)(x-3)}{(2x-1)(x-3)} \\[8pt] &= \lim_{x \to 3} \ \frac{(x+3)}{(2x-1)} \\[8pt] &= \frac{3+3}{2(3)-1} \\[8pt] &= \frac{6}{5} \end{aligned}
Jawaban E.